Learning Confidence for Out-of-Distribution Detection in Neural Networks

نویسندگان

  • Terrance DeVries
  • Graham W. Taylor
چکیده

Modern neural networks are very powerful predictive models, but they are often incapable of recognizing when their predictions may be wrong. Closely related to this is the task of out-ofdistribution detection, where a network must determine whether or not an input is outside of the set on which it is expected to safely perform. To jointly address these issues, we propose a method of learning confidence estimates for neural networks that is simple to implement and produces intuitively interpretable outputs. We demonstrate that on the task of out-of-distribution detection, our technique surpasses recently proposed techniques which construct confidence based on the network’s output distribution, without requiring any additional labels or access to out-ofdistribution examples. Additionally, we address the problem of calibrating out-of-distribution detectors, where we demonstrate that misclassified in-distribution examples can be used as a proxy for out-of-distribution examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface

Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...

متن کامل

Proposing A Distributed Model For Intrusion Detection In Mobile Ad-Hoc Network Using Neural Fuzzy Interface

Security term in mobile ad hoc networks has several aspects because of the special specification of these networks. In this paper a distributed architecture was proposed in which each node performed intrusion detection based on its own and its neighbors’ data. Fuzzy-neural interface was used that is the composition of learning ability of neural network and fuzzy Ratiocination of fuzzy system as...

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier

Microgrids have played an important role in distribution networks during recent years.  DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.04865  شماره 

صفحات  -

تاریخ انتشار 2018